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Uncertainty is present in many decisions where an action’s consequences are unknown because they

depend on future events. Multi-attribute utility theory (MAUT) offers an axiomatic basis for choice, but

evaluate their ability to approximate results obtained using MAUT. Our basic message is that avoiding

assessment errors in the application of a simplified model is more important than the choice of a

particular type of model, but that the best performance over a range of decision problems is from a

model using a small number of quantiles.
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1. Introduction

In decision-making the consequences of an action are often
unknown because they depend on future events. Many models
exist for multi-criteria decision analysis (MCDA) under such condi-
tions of uncertainty; perhaps the most well-known are those based
on multi-attribute utility theory MAUT, e.g. [25]. The great strength
of MAUT is its axiomatic foundation ‘‘justifying the prescriptive
approach provided the problem owners accept the related ration-
ality assumptions’’ [21], but even in its simplest form the practical
implementation of MAUT is formidable, requiring the assessment of
probability distributions over each attribute as well as trade-offs
involving single- and multi-attribute lotteries. Although there are
several practical applications of MAUT reported in the literature e.g.
[8,48], this number is small relative to MAUT’s theoretical standing.
Yet practitioners may prefer to use simpler decision models for
transparency, ease of use, or other practical reasons. In this paper
we identify a number of such ‘simplified’ decision models and
evaluate their ability to replicate results obtained using MAUT. In
doing so we hope to provide some guidance to practitioners about
the types of simplified models that are being used for uncertain
decision making.

Our evaluation uses a simulation experiment, acknowledging
that while simulation allows us to assess how the simplification of
MAUT models might impact results, it cannot evaluate critical issues
like ease-of-use or insight generated (see [13] for an assessment of
these). Simulation results are unable to provide general conclusions
on the viability of different methods, but provide inputs to such
ll rights reserved.
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discussion by identifying the potential trade-offs in accuracy that
are implied when using a simplified model. Ultimately accuracy
must be weighed against other factors to determine which decision
model may be most appropriate for a problem.

The five models that we test represent uncertain attribute
evaluations using (a) expected values, (b) expected values and
variances, (c) expected values and the probabilities of obtaining
performance below a cut-off, (d) quantiles, or (e) a small number of
‘scenarios’. Since these methods all summarize aspects of prob-
ability distributions, they are referred to collectively as ‘simplified’
approaches; models (b) and (c) are sometimes referred to collec-
tively as models using ‘explicit risk attributes’. All models are based
upon the principles of value function methods e.g. [6]; other MCDA
methods are left to future research.

The paper is organized as follows. Section 2 provides an over-
view of the literature on uncertainty modeling in MCDA. Section 3
lists research hypotheses to be tested by the simulation. Section 4
outlines the simulation experiment, and Section 5 presents the
results. A final section concludes with implications for practice.
2. Uncertainty modeling in multi-criteria decision analysis

Consider a decision problem consisting of I alternatives denoted
by ai, iAf1, . . . ,Ig, evaluated on J attributes denoted by cj, jAf1, . . . ,Jg.
Let Zij be a random variable denoting the evaluation of ai on cj, and
ujðZijÞ be single-attribute utility functions. Then the additive MAUT
model [25] evaluates alternatives by their expected utilities

Ui ¼
XJ

j ¼ 1

wjE½ujðZijÞ� ð1Þ
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where Ui is the expected utility of alternative ai and wj is an attribute
importance weight indicating the relative importance of a one-unit
change in attribute cj e.g. [6]. The additive MAUT model requires
additively independent preferences [25], although it can often closely
approximate the multiplicative model when additive independence
does not hold [41]. We consider further simplifications of the MAUT
model; the following is not exhaustive but provides a broad coverage
of simplifications appearing in the literature.

2.1. Models using expected values and explicit risk attributes

This approach provides a single or small number of risk
measures indicating how ‘risky’ performance is. The fundamental
notion is that uncertain evaluations can be expressed in terms of
‘value’ and ‘risk’ components. Models take the form

UðriskÞ
i ¼

XJ

j ¼ 1

½wjujðE½Zij�Þ�wR
ijRij� ð2Þ

where Rij is a measure of the ‘risk’ of Zij and wR
ij is a ‘risk weight’ for Rij.

In this general formulation the risk weights may depend on alter-
natives as well as attributes. Several models are possible. The use
of variances is standard in (single-attribute) portfolio optimization
e.g. [29]; multi-attribute applications are reported in [11,26] and [3].
Kirkwood [26] has shown that using variances with wR

ij ¼

ð�1=2Þwju
00
j ðE½Zij�Þ can closely approximate (1) if the Zij are normally

distributed (or numerous enough for the central limit theorem to
apply) and the uj ‘‘do not deviate too much from linear’’. However,
simulation results [12] have suggested that under highly non-linear
preferences the approximations in [26] do worse on average than a
model using only expected values i.e. setting wR

ij ¼ 0. Examples using
only expected values are [20] and [22], but it seems reasonable to
suggest that a fair proportion of applications of multi-attribute value

theory MAVT, e.g. [25] would also fall into this category. Probabilities
of obtaining performance below a cut-off have also been used to
measure risk e.g. [43,2], including the multi-attribute preference
models using uncertain targets that have been shown to be equiva-
lent to MAUT [7].

2.2. Models using quantiles

In practical decision analysis it is common to represent
probability distributions using three to five quantiles [16]; this
is the basis for the well-known bisection and interval elicitation
methods e.g. [40]. Triples consisting of the minimum, median/
mode, and maximum are also popular in fuzzy decision analysis
e.g. [28,15]. Quantiles may be used in several ways–full distribu-
tions may be fitted to them, or they can be used to approximate
moments e.g. [24]. The general quantile model evaluates ai by

UðquanÞ
i ¼

XJ

j ¼ 1

wj

XNq

k ¼ 1

wqk
ujðz

ðqkÞ

ij Þ

" #
ð3Þ

where qk refers to a specific quantile, zðqkÞ

ij is the qkth quantile of Zij,
wqk

denotes the weight associated with quantile qk, and Nq is the
number of quantiles used. Applications employing quantiles can
be found in [43,34,37]. Note that the order of summation in (3)
can be interchanged; the one used highlights that quantiles are
introduced to approximate E½ujðZijÞ�.

2.3. Models using scenarios

Uncertain outcomes can also be represented using a set of
scenarios – incomplete but internally – consistent narratives of
how the future might unfold. The use of ‘scenario planning’ e.g.
[47,45] emphasizes gaining insight into the problem and gener-
ating novel actions rather than approximating MAUT. Multi-
attribute scenario models e.g. [18, Chapter 14] apply a determi-
nistic multi-attribute model within each scenario, followed (pos-
sibly) by an aggregation over scenarios [44]. The evaluation of ai is
given by

UðscenÞ
i ¼

XNs

k ¼ 1

wsk

XJ

j ¼ 1

wjujðz
ðskÞ

ij Þ

2
4

3
5 ð4Þ

where sk refers to a specific scenario, zðskÞ

ij is the evaluation of

alternative ai on attribute cj in scenario sk, wsk
is the weight

associated with scenario sk, and Ns is the number of scenarios
used. The practical interpretation and assessment of the scenario
weights wsk

has not been fully resolved. Stewart [44] argues

that the wsk
should not be equated with scenario ‘‘probabilities’’

because the set of scenarios does not constitute a complete
probability space, but should also not be equated with scenario
‘‘likelihoods’’ because the scenarios are incomplete descriptions
and cannot in general be expected to represent the same dimen-
sions in probability space. Rather, they should be interpreted as
relative ‘‘swing’’ weights on performance in different scenarios.

This is theoretically permissible, since the
PJ

j ¼ 1 wjujðz
ðskÞ

ij Þ values

constitute an interval preference scale, but ‘‘it may be difficult to
elicit appropriate values for the scenario weights’’ [44]. Max–min
aggregation over scenarios has also been used [31]. Recent applica-
tions of multi-attribute scenario models can be found in [46,35,19].
3. Research aims and hypotheses

Our main aim is exploratory: To evaluate how closely the
simplified models in Section 2 approximate MAUT. Nevertheless
we do have some expectations which can be formalized as hypoth-
eses. In the following we assume without loss of generality that
utility increases in Zij and that each marginal utility function uj has
been scaled to have a minimum of 0 and a maximum of 1. All
hypotheses and reported results in this paper use ‘‘utility loss’’ [4] to
measure accuracy. Utility loss is defined as UL¼ ðUin�U

isel Þ=ðUin�Uin Þ

where Uin and Uin are the utilities (according to MAUT) of the best
and worst alternatives in the MAUT rank order respectively, and U

isel

is the utility (according to MAUT) of the alternative selected by a
simplified model. Although this measure is not entirely unconten-
tious (for example, the introduction of a weaker worst alternative
will ceteris paribus reduce utility loss), it is widely used in simula-
tion-based studies of decision making e.g [9,14]. Other metrics were
also gathered, including the average rank of the alternative selected
by a simplified model in the MAUT rank order, the average rank of
the MAUT best alternative in a simplified model’s rank order, and
the rank correlation between the simplified model and MAUT rank
orders. These did not provide any additional insights and are not
reported.

Previous work [12] found that a model using expected values
was on average more accurate than a variance model using
Kirkwood’s weights [26]. We expect worse accuracy from var-
iance models in which only a general appetite or aversion for risk
i.e. wR

ij ¼ Cwj with C a constant, is expressed.

Hypothesis 1. Variance models in which risk weights are fixed
multiples of attribute importance weights will be less accurate
than an expected value model.

Keefer and Bodily [24] have shown that expected values can be
closely approximated using the 5%, 50% and 95% quantiles, so
three or more quantiles could be used to approximate expected
values and apply an expected value model. We expect better
results if quantiles are transformed into utilities before aggrega-
tion i.e. from the quantile model.
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Hypothesis 2. Quantile models will be more accurate than an
expected value model.

The accuracy of all models will suffer from assessment errors, but
theories of ‘‘error cancelation’’ e.g. [27] suggest that models that
use multiple inputs will be more robust to random errors than
those that provide more concise summaries of uncertainty.

Hypothesis 3. The robustness of model accuracy to assessment
errors will be positively correlated with the number of inputs
used to summarize probability distributions.

In [12], we noted that one of the key determinants of the accuracy
of the expected value model was the steepness of the marginal
utility functions in the region of the expected value approximation,
because any differences between MAUT utilities (i.e. E½ujðZijÞ�) and
their approximations (i.e. ujðE½Zij�Þ) are more heavily penalized
there [12]. Since all our simplified models make some use of
central location measures, we expect the same result to apply.

Hypothesis 4. The accuracy of all simplified models will worsen
as utility functions become steeper in the region of the attribute
domain in which approximations are made.

The accuracy of the expected value model is not materially
affected by the number of alternatives or attributes present
[12]. We hypothesize the same relative insensitivity to problem
size in the other simplified models.

Hypothesis 5. Problem size (the number of alternatives and
attributes) will not have a material effect on the accuracy of any
of the simplified models.

Because there has been little systematic research into the use of
scenarios in decision analysis, no hypotheses are made regarding
these models.
4. Design of the simulation experiment

Fig. 1 shows an outline of a single simulation run. Dashed
boxes have been used to indicate those parts of the simulation
applied iteratively to each alternative and attribute. Correspond-
ing section numbers are shown to indicate where in the text
further details can be found.

4.1. Generating realizations from Zij

The main difference between our and others’ simulations of
realizations from Zij e.g [5,36] is that we consider each Zij to be
composed of L¼10 normal distributions, denoted by Nðmij‘ ,s2

ij‘Þ,
‘Af1, . . . ,Lg where m and s2 are mean and variance respectively.

The index ‘ is referred to as indexing the ‘future’ f ‘. Most previous
studies have used a single distribution for each Zij, but multiple
distributions are used here because they allow a parsimonious
simulated application of scenario models. The choice of distribution,
as well as the number of distributions to use, is somewhat arbitrary,
but the robustness of our conclusions has been tested against
these choices. We also simulated evaluations from the uniform
distribution, and experimented with different numbers of distribu-
tions (LAf6;10,20g), with no qualitative differences in the results.

We begin by generating means for the realizations in each future
randomly between 0 and 1; although the uniform distributional
form will be altered by later standardization, this does not materi-
ally affect results. A simulation parameter then determines whether:
�
 the mij‘ are used directly, which allows alternatives to be
dominated within one or more futures i.e. have a smaller
mean than another alternative on every attribute e.g. [5,36], or
�
 alternatives are forced to be Pareto optimal in each future
by standardizing within each alternative ai so that

P
jmij‘ ¼ 1

e.g. [12].

These cases are referred to as ‘‘with dominated alternatives’’ and
‘‘without dominated alternatives’’ respectively.

Within each future f ‘ , the simulation then generates unstan-
dardized realizations by:
1.
 Generating a standard deviation sij‘ randomly on
Uni½0:01,sðdÞ�, where sðdÞ is a parameter of the simulation.
2.
 Setting the number of realizations M‘ to be generated for
future f ‘. A total of K¼400 realizations for each Zij is used i.e.
over all futures, although conclusions are insensitive to this
value. These realizations are distributed over futures either
‘‘uniformly’’ ðM¼ ½40;40, . . . ,40�Þ or ‘‘non-uniformly’’ ðM¼
½60;60,60;60,40;40,20;20,20;20�Þ. M is a parameter of the
simulation.
3.
 Generating M‘ independent realizations from Nðmij‘ ,s2
ij‘Þ. The

1�M‘ vector of realizations generated in future f ‘ is denoted zð‘Þij .

Once realizations have been generated for each future, these are
concatenated into a single 1� K vector containing all the realiza-
tions for Zij i.e. zij ¼ ½z

ð1Þ
ij ,zð2Þij , . . . ,zð‘Þij , . . . ,zðLÞij �. Realizations are scaled

so that the largest realization on each attribute over all alter-
natives is one and the smallest is zero.
4.2. Generating inputs to the simplified models

Each simplified model uses a different summary of the
realizations in zij.

4.2.1. Expected value model

Uses the empirical mean of zij, E½zij�.

4.2.2. Explicit risk models

Two explicit risk models are simulated, both of which also use
the expected values E½zij�:
1.
 Variance model: uses empirical variances var½zij� to measure risk.

2.
 Probability of poor performance model: uses the proportion of

realizations in zij that fall below a cut-off L, a parameter of the
simulation, to measure risk.

4.2.3. Quantile models

Uses empirical quantiles of the zij. The number of quantiles Nq is a
parameter of the simulation. If Nq¼3, the 5%, 50%, and 95% quantiles
are used; if Nq¼5, the lower and upper quartiles are added.

4.2.4. Scenario models

Inputs to the simulated scenario models are generated in a
two-step process. First, a random sample is drawn from the set of
futures ff 1,f 2, . . . ,f Lg (the same random sample is used for all
alternatives and attributes); then, realizations in each of the
sampled futures are summarized, for each alternative and attri-
bute. Scenario models differ with respect to how the random
sampling and summarization are performed. The following three
models are used:
�
 ‘Mean scenario’ model

1. Randomly draws a sample of size Ns from ff 1,f 2, . . . ,f Lg

without replacement. Each future f ‘ has an equal prob-
ability of selection.

2. Uses the mean mij‘ in each of the Ns selected futures.



Fig. 1. Outline of a single simulation run.
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�
 ‘Random scenario’ model

1. Randomly draws a sample of size Ns from ff 1,f 2, . . . ,f Lg

without replacement. Each future f ‘ has an equal prob-
ability of selection.

2. Randomly selects one realization from zð‘Þij in each of the Ns

selected futures.

�
 ‘Most likely scenario’ model

1. Randomly draws a sample of size Ns from ff 1,f 2, . . . ,f Lg with
replacement. Each future f ‘ is selected with probability
proportional to M‘ .

2. Randomly selects one realization from zð‘Þij in each of the Ns

selected futures.
The proportion of futures selected i.e. Ns=L, is a simulation
parameter termed the ‘coverage’ provided by a scenario model.
Although attribute generation is somewhat biased in favor of a
‘mean scenario’ model using all L futures, the coverage para-
meter captures in an idealized way the scenario planning aim
of constructing scenarios that ‘‘bound the future’’ e.g. [38]; a
scenario model with 100% coverage is practically unrealistic but
useful in giving an upper bound on accuracy. More realistic
scenario models with less coverage (50% and 30%) are also
simulated, and sensitivity to coverage and construction method
are important results.

4.3. Generating errors in the assessment of uncertainty information

Assessment errors are simulated by multiplying all inputs to
the simplified models (expected values, variances, probabilities of
poor performance, quantiles, and realizations within selected
futures) by independent and randomly generated realizations on
Uni½1�n,1þn�, with n a simulation parameter. Final assessments
are denoted using the ‘hat’ symbol e.g. expected values Ê½zij�.

4.4. Generating preference structures

The simulated marginal utility functions exhibit diminishing
sensitivity and loss aversion [23] i.e. are convex below a reference
level, concave above it, and steeper below the reference level.
Each marginal utility function is described by four parameters:
the reference level, tj, the value of the utility function at the
reference level, lj, and the curvature of the utility function below
and above the reference level, aj and bj respectively, using the
standardized exponential form

ujðxÞ ¼

ljðe
ajx�1Þ

eajtj�1
for 0rxrtj

ljþ
ð1�ljÞð1�e�bjðx�tjÞÞ

1�e�bjð1�tjÞ
for tjoxr1

8>>><
>>>:

ð5Þ

The same approach was used in [42] and [12]; a diverse set of
preferences may be simulated by adjusting tj,lj and bj (aj is set to
bjþU½0;2�). Attribute importance weights are generated to be
uniformly distributed with a minimum normalized value of 1/2J,
following [10].

4.5. Simulating the application of an additive MAUT model

The expected utility of ai is given by (1), where as in other
models the vector of realizations zij is used in place of the random
variable Zij. Note that all probability information is taken into
account in the generation of zij.

4.6. Simulating the application of the simplified models

4.6.1. Expected value model

The evaluation of ai is given by (2) with all wR
ij ¼ 0.
4.6.2. Explicit risk models

The evaluation of ai is given by (2). Risk weights are simulated
using three approaches:
1.
 Using a fixed risk multiplier: Risk weights are set so that the
average contribution made by the risk components over all
alternatives is a proportion P (termed the ‘fixed risk multi-
plier’) of the average contribution made by the value compo-
nents. ‘Fixed risk weights’ are given by wR

ij ¼ PwjujðEi½Ê½zij��Þ=

Ei½R̂ij� 8i, where Ei denotes that expectations are taken over all
alternatives and PAf0:25,0:5,1g.
2.
 Using an optimal risk multiplier: as for the ‘fixed’ specification
above, risk weights are a constant proportion P of the attribute
weights wj, but now with the constant P chosen to select as a
winner an alternative that performs as well as possible in the
rank order provided by MAUT. We implemented this using an
integer program which minimizes the rank of the selected
alternative in the MAUT rank order. This is equivalent to
minimizing utility loss because, given generated problem data,
the utility of the best and worst alternatives are fixed and so
utility loss can only take on I possible values. Although the
approach is not practically feasible because in practice one
would not know the MAUT rank order, it provides an upper
bound on the performance that can be achieved with a single
multiplier P. The results are labeled ‘optimal risk weights’.

When using variances we include a further approach:
3.
 Using Kirkwood’s weights: Following [26] we use risk weights
wR

ij ¼ ð�1=2Þwju
00
j ðÊ½zij�Þ.

4.6.3. Quantile models

The evaluation of ai is given by (3). Two approaches for
generating quantile weights are used. The first uses equal weights
for each quantile i.e. wqk

¼ 1=Nq. The second computes optimal
quantile weights using a similar integer program to the one
above, except that three or five weights can vary and quantile
weights are constrained to sum to one.

4.6.4. Scenario models

The evaluation of ai is given by (4). All scenarios are equally
weighted i.e. wsk

¼ 1=Ns. We also tried weighting scenarios by
their relative likelihoods i.e. M‘=K , finding that this only improved
accuracy substantively when one scenario was overwhelmingly
more likely to occur e.g. 80% of all realizations generated from the
same future. For brevity we restrict attention to the case of equal
scenario weights.

4.7. Comparing results of the MAUT and simplified models

The accuracy of each simplified model is evaluated using
utility loss as defined in Section 3.

4.8. Parameter values used in the simulations

Table 1 provides the parameter values used to simulate
decision problems. The effect of problem size is investigated
using I¼9 or 29 alternatives, so that a random choice of
alternative would appear on average 5th or 15th in the MAUT
rank order respectively with J¼10 or 20 attributes. The four
combinations allow for an independent investigation of alterna-
tives and attributes in decision environments located between
‘fairly small’ and ‘fairly big’ (in [5] and [36] smaller problems are
also included but otherwise similar values are used).



Table 1
Parameter values used to simulate hypothetical decision problems.

Parameter Description Values

Problem context:
I Number of alternatives 9, 29

J Number of attributes 10, 20

M Distribution of realizations Uniform: ½40;40,40, . . . ,40�

over futures Non-uniform:

[60,60,60,60,40,40,20,20,20,20]

Attribute evaluations:

sðdÞ Upper limit for sij‘ 0.05 or 0.10

Errors in assessments of uncertainty information:
n Width of interval for random

factor

0, 0.1, 0.2, 0.3

Uni½1�n,1þn� generating errors

Marginal utility functions:
tj Reference level for uj Uni[0.15,0.4] or Uni[0.6,0.85]

lj Value of uj at the reference level Uni[0.15,0.4] or Uni[0.6,0.85]

bj Curvature of uj above reference

level

0, Uni[0,2] or Uni[0,5]

Table 2
Parameters used to simulate the application of simplified decision models.

Parameter Description Values

P Fixed risk multiplier 0.25, 0.5, 1

L Poor performance cut-off 0.05, 0.1, 0.5

Nq Number of quantiles used 3, 5

Ns=L Coverage 30%, 50%, 100%

1 These are calculated based on error-free assessments only. When assess-

ment errors are made the simulation chooses optimal quantile weights to

compensate for the errors—something real-world decision makers cannot do.
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Parameter values for sðdÞ were chosen by varying these until
realizations in different futures could not be distinguished and
appeared sufficiently uncertain. In the ‘low’ and ‘high’ variability
conditions indicated in Table 1 the average difference between
the 5th and 95th percentile of zij is 0.42 and 0.58 respectively. The
assessment error parameter n is key and so is varied at four levels
from 0% (error-free) to 30% (severely flawed assessment).

Parameter values for tj and lj can give preferences that are
convex (e.g. tj ¼ 0:85,lj ¼ 0:15) or concave (e.g. tj ¼ 0:15,lj ¼ 0:85)
in the majority of the domain, ‘S-shaped’ or linear (e.g. tj � lj,
with aj and bj both large or small respectively). A wide range of
preferences can be simulated with relatively few parameters. The
same parameter values have been used in [42] and [12].

Table 2 shows the values used for the parameters of the
simplified models. The fixed risk multiplier P used in the explicit
risk models is varied between 0 and 1 using intervals of 0.25. In
assessing the probability of performing below a cut-off, we use
two cut-offs (L¼ 0:05,0:10) that represent very poor performance
(between the 0.5% and 5% quantiles of performance, depending on
attribute variability) and one cut-off (L¼ 0:50) representing
mediocre performance (between 40% and 70% quantiles). Three-
and five-quantile summaries are selected as standard summary
statistics that are regularly used to approximate probability
distributions [16] and moments [24]. Our main goal in selecting
the number of scenarios is to investigate the effect of omitting
futures—we simulate the selection of 10, 5 and 3 of the original
L¼10 futures, giving ‘coverage’ of 100%, 50% and 30% respectively.
Note that this does not test the general effectiveness of using 3, 5,
or 10 futures, even in the limited sense of accurate approximation
of MAUT.

We use a resolution V fractional factorial design e.g. [30,
Chapter 8], so all main effects are unconfounded with two- and
three-factor interactions, and all two-factor interactions are
unconfounded with other two-factor interactions. We perform
100 simulation runs for each combination of parameters, giving
standard errors of at most 0.003 for mean utility losses in groups
formed by combinations of two factors. This is small enough for
any differences we discuss to be statistically significant at the
1% level.
5. Results

Fig. 2 shows the average utility loss of each simplified model
under error-free assessments, indicated by unshaded circles, and
erroneous assessments, indicated by shaded circles (10% error),
squares (20% error) or triangles (30% error). Within each model
type, utility losses are ordered from best to worst according to the
error-free values. For comparison, a random selection policy gives
a utility loss of approximately 0.50 with or without dominated
alternatives. The mean utility of the MAUT best (worst) alter-
native is 0.43 (0.33) without dominated alternatives, and 0.52
(0.32) with them. The presence of dominated alternatives intro-
duces weaker ‘worst’ alternatives while leaving the other compo-
nents of utility loss relatively unaffected (because dominated
alternatives are very rarely selected). This makes utility losses
generally smaller when dominated alternatives are included, but
our conclusions are unaffected and the discussion below focuses
on results obtained without them.

In Fig. 2, Hypotheses 1 and 2 are strongly supported and
Hypothesis 3 is conditionally supported. The average utility loss
using expected values is at least as good as any explicit risk model
using fixed risk multipliers (Hypothesis 1), provided assessment
errors are not large. When assessment errors are large a model
using probabilities of performing below a central quantile can be
more accurate than one using expected values. This suggests that
an explicit risk attribute may impart some robustness to assess-
ment errors. In general though, it appears that a model using a
fixed risk multiplier approximates MAUT relatively poorly. Sensi-
tivity to assessment errors decreases as the risk multiplier is
increased because ‘risk’ components (variances, probabilities of
poor performance) are less sensitive to errors than (expected)
‘value’ components. If only variances are used, the utility loss
varies from 0.40 to 0.45 depending on assessment errors. In
contrast with the other simplified models, the utility losses of
variance models with large risk multipliers do not improve when
dominated alternatives are included because there are no sub-
stantial differences in the variances of dominated and non-
dominated alternatives. A variance model using Kirkwood’s
weights [26] performs better than one using fixed risk multipliers,
but it is only in the unrealistic case where the risk multiplier is
optimally chosen that an explicit risk model gives consistently
better results than expected values alone.

The average utility loss for the equal-weight quantile models
over all assessment errors without dominated alternatives is
0.052 and 0.080 using five or three quantiles respectively,
significantly lower than the 0.106 obtained using expected values
(Hypothesis 2). The better accuracy is partly due to robustness to
assessment errors, but even in the absence of errors average
utility loss is 0.004 and 0.019 if five or three quantiles are used
respectively, and 0.020 using expected values. If quantile weights
are chosen optimally, the error-free mean utility loss is less than
0.001 using either five or three quantiles. The average weight
allocated to the 5%, 50%, and 95% quantiles is 0.16, 0.65 and 0.19
respectively1; this is very close to the weights proposed in [24]:
0.185, 0.630 and 0.185. If five quantiles are used, the average
quantile weights are 0.07, 0.12, 0.60, 0.12, and 0.09 for the 5%



Fig. 2. Mean utility loss experienced by each simplified model. Unshaded and (three) shaded points show the average utility loss in error-free simulations and with

assessment errors of 10%, 20%, and 30%.

2 Another explanation is that a sharp threshold at a low reference level

implies a utility function that is relatively flat over a large portion of the attribute

domain, which reduces the utility loss of selecting a ‘good-but-not-the-best’

alternative. However, the rank of the alternative selected by the simplified models

in the MAUT rank order also deteriorates (from an average of 2.0 to 2.4 as utility

functions shift from mostly concave to mostly convex), and thus this cannot

completely explain the effect.
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through 95% quantiles respectively. Subsequent additional simu-
lations confirmed the suggestion that good accuracy will be
obtained if quantile weights are fixed at the Keefer–Bodily values.

Fig. 2 also shows that if one excludes explicit risk models
which perform terribly there is a trend towards increased robust-
ness in the quantile and scenario models, although robustness
varies widely within model type. Table 3 shows the deteriorations
in utility loss that occur due to assessment errors. The selected
models are the best-performing versions of each simplified model
(in terms of mean utility loss with no assessment error) that do
not make use of optimal weights. These have been ranked from
the smallest average increase in utility loss over all assessment
errors to the largest. Although the three-scenario model is more
robust than the five-quantile model, there is otherwise a clear
association between the number of inputs used by a model and its
robustness to error.

Scenario model accuracy is strongly influenced by both sce-
nario construction and coverage. Substantially better accuracy is
obtained if scenarios are constructed using mean values. The
relatively poor results obtained when selecting realizations at
random from each future highlights the importance of accurately
assessing means. If no futures are omitted (100% coverage), then
results can be excellent; but if coverage drops to 50% then
accuracy when no assessment errors are made is worse than if
expected values are used. Our view is that results using 50% and
30% coverage probably provide more appropriate indicators of the
practical potential of scenario models. Coverage becomes more
important relative to scenario construction when dominated
alternatives are present; all models with 100% coverage outper-
form all those with 50% coverage, which in turn outperform all
those with 30% coverage. This is because alternatives can perform
terribly in omitted futures. An advantage of scenario models is
increased robustness to assessment errors. When assessment
errors are made, the mean scenario model with 50% coverage
offers similar performance to a three-quantile model using equal
quantile weights.

Table 4 shows how average utility loss differs over other
simulation parameters. The utility function parameters tj and lj

are shown jointly to evaluate Hypothesis 4. Accuracy is primarily
affected by the shape of the utility functions, and is best when
these are predominantly concave and worst when they are
predominantly convex. Many of the approximations used in our
simulations occur in the middle-to-upper part of the attribute
domain, where convex utility functions are steeper than concave
ones (Hypothesis 4). This occurs because any differences are more
heavily penalized by a steeper utility function.2 Further results
show that both the approximations made by simplified models
and assessment errors cause the deteriorations in accuracy. With
no assessment errors, the greatest utility loss for all simplified
models occurs with highly convex utility functions (high tj, low lj).
The increase in average utility loss caused by the same size
assessment error is also greatest when utility functions are highly



Table 3
Increases in mean utility loss caused by assessment errors. Results are only

reported for simulations without dominated alternatives. Simplified models are

represented by their best-performing versions, after excluding models using

optimal risk or quantile weights.

Model Conditions Assessment error

10% 20% 30%

Scen 10 mean scenarios (100% coverage) 0.008 0.034 0.063

Scen 5 mean scenarios (50% coverage) 0.013 0.048 0.080

Scen 3 mean scenarios (30% coverage) 0.020 0.058 0.095

Quan 5 equally weighted quantiles 0.024 0.067 0.102

Quan 3 equally weighted quantiles 0.032 0.085 0.125

Pr(Poor) 0.50 cutoff, risk multiplier¼0.25 0.036 0.093 0.140

Var Kirkwood’s weights 0.049 0.120 0.170

EV – 0.052 0.121 0.172

Table 4
Average utility losses at different levels of the simulated decision problem

parameters. Averages are calculated over all levels of the remaining parameters.

Results are only reported for simulations without dominated alternatives. The

same models are used as in Table 3: the variance model uses Kirkwood weights;

the probability of poor performance model uses a 0.50 cutoff and a risk multiplier

of 0.25, both quantile models use equal quantile weights, and all scenario models

use mean scenarios.

Effect Values EV Var Pr Quantiles Scenarios:

coverage¼

(poor) Nq¼3 Nq¼5 30% 50% 100%

I 9 0.10 0.10 0.10 0.07 0.05 0.10 0.06 0.03

29 0.10 0.10 0.10 0.08 0.05 0.10 0.06 0.03

J 10 0.10 0.10 0.10 0.07 0.05 0.10 0.06 0.03

20 0.10 0.10 0.10 0.08 0.05 0.09 0.06 0.03

M Uniform 0.09 0.09 0.09 0.08 0.05 0.09 0.06 0.03

Non-unif. 0.10 0.10 0.10 0.07 0.05 0.10 0.06 0.03

sðdÞ Uni[0.01,0.05] 0.08 0.09 0.09 0.05 0.04 0.06 0.04 0.02

Uni[0.01,0.10] 0.10 0.10 0.10 0.08 0.05 0.11 0.07 0.03

ðt,lÞ (Low,low) 0.08 0.08 0.07 0.05 0.03 0.09 0.05 0.02

(Low,high) 0.07 0.08 0.09 0.04 0.02 0.07 0.04 0.01

(High,low) 0.13 0.12 0.13 0.12 0.08 0.13 0.09 0.05

(High,high) 0.10 0.10 0.09 0.08 0.05 0.10 0.06 0.03

b 0 0.09 0.09 0.09 0.07 0.04 0.09 0.06 0.03

Uni[0,2] 0.10 0.09 0.10 0.07 0.05 0.09 0.06 0.03

Uni[0,5] 0.11 0.11 0.10 0.08 0.05 0.11 0.07 0.03
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convex. Table 4 also shows that the accuracy of all the simplified
models is very nearly constant over the simulated problem sizes
(Hypothesis 5), although this depends on utility loss being used to
measure accuracy. Measures of accuracy based on ranks e.g. the
average rank of the selected alternative in the MAUT rank order,
differ significantly with the number of alternatives used, but an
increasing rank does not necessarily imply a deterioration in
decision quality because the size of the rank order i.e. number of
alternatives, has also increased. The only other variable exerting a
meaningful effect on accuracy is the variability of the attribute
evaluations—as evaluations become more variable the accuracy
of all the simplified models worsens.
6. Implications for decision analysis

Our simulation evaluates the ability of a number of simplified
decision models to approximate MAUT. We do not intend to use
these results to conclude a detailed apparatus prescribing rules for
using particular models in particular situations. Rather the results
suggest a general course of action for practitioners who for reasons of
simplicity prefer not to use MAUT. We stress that all our findings are
limited by the range of simulated cases, as all simulation experi-
ments are. The complexity of the simulation apparatus is largely to
ensure that a suitable range of problems have been covered, although
doubtless there are counterexamples to our findings which could be
constructed. Although the apparatus of the simulation experiment
may be complex, our conclusions are fairly simple.

Our basic message is that – for a wide range of simulated
problems – all of the simplified models are able to produce results
that are close, on average, to MAUT. The best-performing of each
of the simplified models have average utility losses less than 0.04
(where 0 is optimal, and randomly selecting an alternative
returns an average utility loss of approximately 0.5). Given the
time and effort required to implement MAUT, simplified models
appear justifiable for many decision problems. Our results suggest
that avoiding assessment errors in the application of a simplified
model is more important than the type of model used. Analysts
thus have considerable scope to choose the model that they or the
decision makers they are facilitating are most comfortable with
and least likely to apply poorly. One check that analysts should
perform before using a simplified model is to test whether
preferences are highly non-linear. Our results indicate that the
accuracy of all simplified models deteriorates as preference
thresholds become sharper in the region where approximations
are made, because assessment errors are more heavily punished.
Analysts wishing to use simplified models but finding strong
preference thresholds should place extra effort in ensuring
accurate assessments.

Although the performance of all the simplified models is good
in the absence of assessment errors, a quantile model performs
consistently best. The final choice of model will need to take into
account other practical factors. Our results only suggest that if
analysts wish to conform to MAUT but lack the resources to
implement it, they should consider a quantile model first. These
results echo those of the behavioral study in [13]. Accuracy is best
served by aggregating evaluations over quantiles using the
weights proposed in [24]: the weight on the median is 0.63 and
the remainder is shared between the extreme quantiles. The
quantile weights aim only to approximate a MAUT model; they
do not provide preference information and so no assessment is
required. Quantiles, and particularly non-extreme quantiles, can
be assessed relatively accurately by decision makers e.g. [33,17]
and are commonly used in the practical assessment of probability
distributions using, for example, the bisection or interval methods
e.g. [40]. Trade-off judgements are also likely to be relatively easy
because quantiles use the same scale as attributes. This suggests
that the three-quantile model may be a useful preliminary
screening tool before a more detailed evaluation is carried out.
This could select the most promising alternatives from a larger
set, or assess whether a choice is possible without needing a full
MAUT analysis. If probability distributions are to be assessed with
the bisection or similar method, any quantiles used by a pre-
liminary model could be used here too, so that a preliminary
model might not add much time or effort to the analysis. If a
quantile model is to be used on its own, our accuracy results as
well as the relative inaccuracies reported when assessing extreme
quantiles [1] suggest that upper and lower quartiles may be
useful additions to the median and extremes. We suggest that it
may be useful to structure the quantiles into scenario-like
arrangements by collecting together all the attribute evaluations
at a particular quantile. Although such an arrangement is not
necessary, we conjecture that some insight may be gained from
allowing decision makers to compare alternatives at their ‘worst-
case’, ‘best-case’ and some ‘intermediate’ levels of performance.

Several authors have called for decision analysts to pay greater
attention to scenario planning techniques [18,31], which are
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well-established in strategic decision making. Our results indicate
that when a substantial number of futures are omitted a scenario
model performs relatively poorly. If one only considers the best-
performing versions of each simplified models (after excluding
models using optimal risk or quantile weights, as in Tables 3
and 4), a scenario model with 30% coverage gives a worse average
approximation to MAUT than any other simplified model. The
time and cognitive effort involved in constructing scenarios
means some omissions are probably inevitable. Scenario-based
MCDA may possess other advantages – generating insights into
uncertainty and novel actions are commonly cited benefits [39] –
but analysts should be aware that a scenario model, even if
correctly applied, will lead to a outcome that is more different to
MAUT than other simplified models. Sometimes an analyst may
for pragmatic reasons want to use scenarios but also wish to
obtain results that are close to MAUT. Our results suggest that in
such cases scenarios should attempt to capture mean perfor-
mances in as many futures as is practically feasible. This is quite
different to the philosophy of scenario planning, which often
advocates taking a small number of extreme positions when
constructing scenarios e.g. [39].

For the range of simulated problems, explicit risk models
performed relatively poorly. When no assessment errors are made
both explicit risk models can lead to poorer approximations of
MAUT than a model using expected values only. The variance
model does particularly poorly when risk weights are a fixed
multiple of attribute importance weights. Behavioral research
suggests that the elicitation and understanding of variance
information is difficult e.g. [16], and the assessment of weights
involving variances also seems a difficult prospect. In conjunction
with our accuracy results, this suggests that the variance model
must use Kirkwood’s [26] risk weights if applied in practice.

Our results suggest some directions for future research. In
behavioral decision research, potential influences on the ‘accu-
racy’ and ‘effort’ involved with decisions (operationalized in
different ways; see [32] for an overview) are routinely tested in
experimental settings. Future research might assess the effect of
uncertainty format on accuracy and effort in a ‘behavioral’ setting,
providing a bridge between simulation and real-world complex-
ity. It also seems crucial to build an understanding of the practical
issues surrounding the application of simplified models. Progress
has been recently made in applications of scenario models [31].
Our results suggest that applications of other models would be
equally welcome.
References

[1] Alpert M, Raiffa H. A progress report on the training of probability assessors.
in: Judgment under uncertainty: heuristics and biases. Cambridge University
Press; 1982. p. 306–34.

[2] Arcelus F, Kumar S, Srinivasan G. Risk tolerance and a retailer’s pricing and
ordering policies within a newsvendor framework. Omega 2012;40:188–98.

[3] Ballestero E. Stochastic goal programming: a mean-variance approach.
European Journal of Operational Research 2001;131:476–81.

[4] Barron F. Influence of missing attributes on selecting a best multiattributed
alternative. Decision Sciences 1987;18:194–205.

[5] Barron F, Barrett B. Decision quality using ranked attribute weights. Manage-
ment Science 1996;42(11):1515–23.

[6] Belton V, Stewart T. Multiple criteria decision analysis: an integrated
approach. Boston: Kluwer Academic Publishers; 2002.

[7] Bordley R, Kirkwood C. Multiattribute preference analysis with performance
targets. Operations Research 2004;52(6):823.

[8] Bose Anne M, et al. Multi-attribute utility methods in group decision
making: past applications and potential for inclusion in GDSS. Omega
1997;25(6):691–706.

[9] Butler J, Dyer J, Jia J. Using attributes to predict objectives in preference
models. Decision Analysis 2006;3(2):100.

[10] Butler J, Jia J, Dyer J. Simulation techniques for the sensitivity of multi-criteria
decision models. European Journal of Operational Research 1997;103:
531–46.
[11] Donckels R. Regional multiobjective planning under uncertainty: a stochastic goal
programming formulation. Journal of Regional Science 1977;17(2):207–16.

[12] Durbach I, Stewart T. Using expected values to simplify decision making
under uncertainty. Omega 2009;37(2):312–30.

[13] Durbach I, Stewart T. An experimental study of the effect of uncertainty
representation on decision making. European Journal of Operational Research
2011;214:380–92.

[14] Fasolo B, McClelland G, Todd P. Escaping the tyranny of choice: when fewer
attributes make choice easier. Marketing Theory 2007;7(1):13.

[15] Fenton N, Wang W. Risk and confidence analysis for fuzzy multicriteria
decision making. Knowledge-Based Systems 2006;19(6):430–7.

[16] Garthwaite P, Kadane J, O’Hagan A. Statistical methods for eliciting prob-
ability distributions. Journal of the American Statistical Association 2005;
100(470):680–701.

[17] Garthwaite P, O’Hagan A. Quantifying expert opinion in the UK water
industry: an experimental study. The Statistician 2000:455–77.

[18] Goodwin P, Wright G. Decision analysis for management judgement. 2nd ed.
Chichester: John Wiley & Sons; 1998.

[19] Grigoroudis E, Orfanoudaki E, Zopounidis C. Strategic performance measure-
ment in a healthcare organisation: a multiple criteria approach based on
balanced scorecard. Omega 2012;40:104–19.

[20] Hajkowicz S, Higgins A. A comparison of multiple criteria analysis techniques
for water resource management. European Journal of Operational Research
2008;184(1):255–65.

[21] Hamalainen R. Reversing the perspective on the applications of decision
analysis (comment on Keefer et al. 2004). Decision Analysis 2004;1(1):26–31.

[22] Janssen R. On the use of multi-criteria analysis in environmental impact
assessment in the Netherlands. Journal of Multi-criteria Decision Analysis
2001;10(2):101–9.

[23] Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk.
Econometrica 1979;47(2):263–91.

[24] Keefer D, Bodily S. Three-point approximations for continuous random
variables. Management Science 1983;29(5):595–609.

[25] Keeney R, Raiffa H. Decisions with multiple objectives: preferences and value
tradeoffs. Cambridge: Cambridge University Press; 1993.

[26] Kirkwood C. Estimating the impact of uncertainty on deterministic multi-
attribute evaluation. Management Science 1992;38(6):819–26.

[27] Kleinmuntz D. Decomposition and the control of error in decision analytic
models. in: Einhorn H, Hogarth R, editors. Insights in decision making: a
tribute to Hillel J. Einhorn. University of Chicago Press; 1990. p. 107–26.

[28] Lee J, Lee-Kwang H. Comparison of fuzzy values on a continuous domain.
Fuzzy Sets and Systems 2001;118(3):419–28.

[29] Markowitz H. Portfolio selection. Journal of Finance 1952;7(1):77–91.
[30] Montgomery D. Design and analysis of experiments. Wiley; 1991.
[31] Montibeller G, Gummer H, Tumidei D. Combining scenario planning and

multi-criteria decision analysis in practice. Journal of Multi-criteria Decision
Analysis 2006;14:5–20.

[32] Payne J, Johnson E, Bettman J. The adaptive decision maker. Cambridge
University Press; 1993.

[33] Peterson C, Snapper K, Murphy A. Credible interval temperature forecasts.
Bulletin of the American Meteorological Society 1972;53(10):966–70.

[34] Rakes T, Deane J, Rees L. IT security planning under uncertainty for high-
impact events. Omega 2012;40:79–88.

[35] Ram C, Montibeller G, Morton A. Extending the use of scenario planning and
MCDA for the evaluation of strategic options. Journal of the Operational
Research Society 2010;62(5):817–29.

[36] Salo A, Hamalainen R. Preference ratios in multiattribute evaluation (PRIME)—
elicitation and decision procedures under incomplete information. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part A 2001;31(6):533–45.

[37] Sawik T. Selection of supply portfolio under disruption risks. Omega
2011;39(2):194–208.

[38] Schoemaker P. When and how to use scenario planning: a heuristic approach
with illustration. Journal of Forecasting 1991;10(6):549–64.

[39] Schoemaker P. Scenario planning: a tool for strategic thinking. Sloan Manage-
ment Review 1995;36:25–125.
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